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Abstract— This paper proposes a geometry-based statistical
model for multiple-input multiple-output shallow water acous-
tic multipath fading channels. From the reference model, the
corresponding space-time-frequency correlation function is de-
rived. Finally, the derived spatial and temporal correlations are
compared with the empirically obtained channel statistics and
close agreement is observed1.

I. INTRODUCTION

Shallow water acoustic (SWA) communications find ap-

plications in oceanographic data collection, tactical surveil-

lance, and offshore exploration. To make these applications

feasible, there is a need for wireless underwater acoustic

communications among deployed sensors and autonomous

underwater vehicles. Statistical characterization of acoustic

communication channels is necessary in order to assess system

performance and improve the quality of a system [1].

The SWA channel is one of the most challenging commu-

nication channels because it suffers path-dependent Doppler

and angle spreading, which results in a time-varying wideband

channel impulse response with long delay spreads [2]. While

several deterministic and statistical simulation models of SWA

channel have been proposed [3]-[6], a statistical framework

for SWA channels is still an open problem. In particular, the

space-time-frequency correlation function is a necessary tool

for a proper design and analysis of multiple-input multiple-

output (MIMO) SWA communication systems. By taking into

account only macro-scattering effects, Abdi and Guo [7] were

the first to derive the space-frequency correlation function for

time-invariant isovelocity SWA channels.

In contrast, this paper models a time-varying SWA channel

by taking into account both macro- and micro-scattering

effects. We first introduce a new geometry-based reference

model for wideband MIMO SWA multipath fading chan-

nels. The proposed model characterizes the sound propaga-

tion in shallow water isovelocity environments by combining

the deterministic ray-tracing theory with statistical methods

needed to characterize random components of the propagation

medium. From the reference model, the closed-form space-

time-frequency correlation function (stf-cf) for a shallow water

isovelocity environment is derived. The closed-form stf-cf

can be useful for estimation of physical parameters of the

channel, such as angle spread, mean angles of departure and

arrival, etc. This allows system engineers to understand how

these channel parameters affect the correlation, which in turn

1This work has been supported by ONR.

provides useful guidelines for the system design. To illustrate

the utility of the proposed model, we compare the temporal

and spatial correlation functions with those obtained from the

measurements reported in [8], [9].

The remainder of the paper is organized as follows. Sec-

tion II introduces the geometry-based statistical model for

wideband MIMO SWA multipath fading channels. Section III

derives the stf-cf for a shallow water isovelocity environment.

Section IV compares the analytical and empirical results

for the temporal and spatial correlations. Finally, Section V

provides some concluding remarks.

II. GEOMETRY-BASED STATISTICAL MODEL FOR

WIDEBAND MIMO SWA CHANNELS

This paper considers a MIMO communication system with

Lt transmit and Lr receive transducers. The propagation

occurs in shallow water environments with a constant sound

speed and is characterized by two-dimensional (2-D) wide

sense stationary uncorrelated scattering (WSSUS) with either

line-of-sight or non-line-of-sight conditions between the trans-

mitter (Tx) and receiver (Rx). The MIMO SWA channel can

be described by an Lr ×Lt matrix H(t, τ) = [hij(t, τ)]Lr×Lt

of the input-delay spread functions.

Fig. 1 shows a SWA channel with Lt = Lr = 2 transducer

elements. This elementary 2 × 2 transducer configuration

will be used later to construct uniform linear arrays with an

arbitrary number of transducer elements. The SWA channel

is modeled as a 2-D waveguide bounded from the top and

bottom. The surface and bottom boundaries reflect an acoustic

signal, which results in multiple eigenrays travelling between

the Tx and Rx, as shown in Fig. 1. The roughness of sea

surface and sea bottom is characterized by S and B macro-

scatterers, respectively. At any time instance t, the Rx receives

2S downward arriving eigenrays, each one having different

number of s surface and b bottom reflections, where 1 ≤ s ≤
S, and s−1 ≤ b ≤ s. Similarly, there are 2B upward arriving

eigenrays with b bottom and s surface reflections, where 1 ≤
b ≤ B and b−1 ≤ s ≤ b. Note that exact positions of scatterers

depend on the surface and bottom characteristics and may vary

from one location to another and from one time instance to

another. On the other hand, the average of scattering positions

over different locations (or time instances) depends only on the

waveguide geometry and the number of eigenrays, and can be

computed. To implement this idea, each eigenray is modeled

as an average of rays scattered from Nsb possible positions

of surface scatterers and Mbs possible positions of bottom

0-933957-38-1 ©2009 MTS
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Fig. 1. The geometry-based model for a MIMO wideband SWA channel
with Lt = Lr = 2 transducer elements.

scatterers (i.e., micro-scatterers), where the possible positions

of scatterers are clustered around the averaged positions of

scatterers, as shown in Fig. 1. The horizontal spacing between

the Tx and Rx is denoted by R. The water depth is denoted by

h, while the depths of Tx and Rx are denoted by hT and hR,

respectively. As we are interested in medium and long range

shallow water communications, we assume that the depths h,

hT , and hR are much smaller than the distance R. The spacing

between two adjacent transducer elements at the Tx and Rx

is dT and dR, respectively. It is assumed that dT and dR are

much smaller than the depths h, hT , and hR. The symbols

ε
(p)
Tsbn and ε

(p)
Tbsm denote distances T

(p)
x -S

(S)
sn and T

(p)
x -S

(B)
bm ,

respectively, where S
(S)
sn and S

(B)
bm denote the nth and mth

micro-scatterers at the surface and bottom, respectively, for

1 ≤ n ≤ Ntb and 1 ≤ m ≤ Mbt, as shown in Fig. 1.

Similarly, the symbols ε
(p̃)
Tsbn, ε

(p̃)
Tbsm, ε

(q)
Rsbn, ε

(q)
Rbsm, ε

(q̃)
Rsbn,

ε
(q̃)
Rbsm, εpq, εp̃q, εpq̃, and εp̃q̃ denote distances T

(p̃)
x -S

(S)
sn , T

(p̃)
x -

S
(B)
bm , S

(S)
sn -R

(q)
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(B)
bm -R

(q)
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(S)
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Fig. 2. The detailed geometry of the DPP, single-bounced surface, and single-
bounced bottom eigenrays scattered from the nth and mth micro-scatterer,
respectively.

of reference, Fig. 2 details the geometry of the deterministic

(direct) propagation paths (DPP) as well as the geometry of

single-bounced surface and single-bounced bottom eigenrays

(i.e., s = 1, b = 0, s = 0, b = 1) scattered from the nth and

mth micro-scatterers, respectively. Angles θT and θR in Fig. 2

describe the orientations of Tx and Rx transducer arrays in the

x-z plane, respectively, relative to the x-axis. The Tx and Rx

are moving with speeds vT and vR in directions described

by angles γT and γR in the x-z plane (relative to the x-

axis), respectively. The symbols α
(p)
Tsbn and α

(p)
Tbsm are the

angles of departure (AoD) of eigenrays that start from T
(p)
x

and impinge on the scatterers S
(S)
sn and S

(B)
bm , respectively,

whereas α
(q)
Rsbn and α

(q)
Rbsm are the angles of arrival (AoA) of

the eigenrays scattered from S
(S)
tn and S

(B)
bm and arriving at

R
(q)
x , respectively. Finally, the symbols αRdpp and D denote

the AoA of DPP ray and the distance OT -OR, respectively.

Observe from the geometrical model in Fig. 1 that prop-

agation through SWA channel can be characterized as a

superposition of surface-bottom bounced eigenrays and the

DPP eigenray between the Tx and Rx. The multiple bounced

rays can be grouped into the upward arriving (UA) rays (i.e.,

the last reflection is from the bottom) and the downward

arriving (DA) rays (i.e., the last reflection is from the surface).

Then, the input delay-spread function of the pressure link T
(p)
x -

R
(q)
x can be written as a superposition of the DPP, UA, and

DA rays, viz.

hpq(t, τ) = hDPP
pq (t, τ) + hUA

pq (t, τ) + hDA
pq (t, τ). (1)

The DPP component of the input delay-spread function is

hDPP
pq (t, τ) =

√
K

K + 1

√
Gp (αRddp + π) Gq (αRdpp)

× LS(D)LA(D)δ
(
τ − τ

(p,q)
dpp (t)

)
, (2)

where Gp(·) and Gq(·) denote the radiation patterns of the pth

transmit and qth receive transducer element, respectively, K is

the Rice factor (ratio of DPP to scatter received power), LS(D)
and LA(D) denote the propagation loss due to spherical

spreading and absorption, respectively, and δ(·) denotes the

Dirac impulse function. The DPP time delay τ
(p,q)
dpp (t) denotes

the travel time of the direct ray between T
(p)
x and R

(q)
x , i.e.,

τ
(p,q)
dpp (t) =

εpq

c
+

vT

c
t cos(αRdpp + π − γT )

+
vR

c
t cos(αRdpp − γR), (3)

where c is the speed of sound. We assume that the Tx has

omnidirectional transducer elements and therefore produces a

spherical wavefront in an isovelocity medium. The propagation

loss caused by the spherical spreading can be written as [10]

LS(D) = 1/D. Furthermore, when sound propagates in the

ocean, part of the acoustic energy is continuously transformed

into heat. This absorption is primarily a result of relaxation

processes in seawater. The absorption loss can be written as

[10]

LA(D) = 10−Dβ/20000, (4)



where

β = 8.68 · 103 (5)

×
(
S · A · fT · f2

c

f2
T + f2

c

+
B · f2

fT
(1 − 6.54 · 10−4 · P )

)
[dB/km],

where A = 2.34 · 10−6, B = 3.38 · 10−6, S is salinity (in

%◦), P is hydrostatic pressure [kg/cm2], fc is the carrier fre-

quency [kHz] and fT = 21.9 · 106−1520/(T+273) is relaxation

frequency [kHz], with T as the temperature [◦C].
The upward and downward arriving components of the input

delay-spread function are, respectively,

hUA
pq (t, τ) =

√
ηB

2B(K + 1)

B∑
b=1

b∑
s=b−1

LS(Dbs)LA(Dbs)

× LB(θbs)b

√
1

Mbs

Mbs∑
m=1

√
Gp

(
α

(p)
Tbsm

)
Gq

(
α

(q)
Rbsm

)

× ξbsmejφbsmδ
(
τ − τ

(p,q)
bsm (t)

)
, (6)

hDA
pq (t, τ) =

√
ηS

2S(K + 1)

S∑
s=1

s∑
b=s−1

LS(Dsb)LA(Dsb)

× LB(θsb)b

√
1

Nsb

Nsb∑
n=1

√
Gp

(
α

(p)
Tsbn

)
Gq

(
α

(q)
Rsbn

)

× ξsbnejφsbnδ
(
τ − τ

(p,q)
sbn (t)

)
, (7)

where ξbsm > 0 and ξsbn > 0 denote the amplitudes, φsbn and

φbsm denote the phases of multipath components, LS(Dsb)
and LS(Dbs) denote the propagation loss due to spherical

spreading, and LA(Dsb) and LA(Dbs) denote the propagation

loss due to absorption, where Dsb and Dbs denote the total

distances travelled by UA and DA rays with s surface and

b bottom reflections. These distances are obtained using the

method of images and can be written as [10]

Dsb =
√

R2 + (2bh + hR − (−1)(s−b)hT )2, (8)

Dbs =
√

R2 + (2sh − hR + (−1)(b−s)hT )2. (9)

The parameters ηS and ηB in (6) and (7), respectively, specify

how much the UA and DA rays contribute in the total power,

i.e., these parameters satisfy ηS + ηB = 1. The parameters

LB(θsb) and LB(θbs) denote the impedance mismatch be-

tween the seawater and seabed and can be written as [10]

LB(θ) =

∣∣∣∣∣m cos θ −
√

n2 − sin2 θ

m cos θ +
√

n2 − sin2 θ

∣∣∣∣∣ , (10)

where m = ρ1/ρ, n = c/c1, ρ and c denote the density and

sound speed in the seawater, respectively, whereas ρ1 and c1

denote the density and sound speed in the seabed, respectively.

The incidence angles θsb and θbs are obtained as follows:

θsb = tan−1

(
R

2bh + hR − (−1)(s−b)hT

)
, (11)

θbs = tan−1

(
R

2sh − hR + (−1)(b−s)hT

)
. (12)

Finally, the time delays τ
(p,q)
bsm (t) and τ

(p,q)
sbn (t) are the travel

times of UA and DA rays with s surface and b bottom

reflections, respectively, i.e.,

τ
(p,q)
sbn (t) =

Dsb

c
− εTsb − ε

(p)
Tsbn

c
− εRsb − ε

(q)
Rsbn

c
+

1
c
ΔZsbn(t) sinα

(q)
Rsbn

+
1
c

[
vT t cos(α(p)

Tsbn − γT ) + vRt cos(α(q)
Rsbn − γR)

]
, (13)

τ
(p,q)
bsm (t) =

Dbs

c
− εTbs − ε

(p)
Tbsm

c
− εRbs − ε

(q)
Rbsm

c
+

1
c
ΔZbsm(t)sinα

(q)
Rbsm

+
1
c

[
vT t cos(α(p)

Tbsm − γT ) + vRt cos(α(q)
Rbsm − γR)

]
, (14)

where ΔZsbn(t) and ΔZbsm(t) denote the vertical displace-

ments of surface scatterers due to the surface motion and the

distances εTsb, εRsb, εTbs, and εRbs are defined in Fig. 1.

It is assumed that the AoDs (α
(p)
Tsbn and α

(p)
Tbsm), the

AoAs (α
(q)
Rsbn and α

(q)
Rbsm), and the vertical displacements

ΔZsbn(t) and ΔZbsm(t) are random variables. Furthermore, it

is assumed that the phases φsbn and φbsm are uniform random

variables on the interval [−π, π) that are independent from the

AoDs, the AoAs, and the vertical displacements at the surface.

Note that the AoDs (α
(p)
Tsbn and α

(p)
Tbsm) are dependent on the

AoAs (α
(q)
Rsbn and α

(q)
Rbsm), respectively. Assuming small angle

spreads, dT � min(hT , h − hT ), and dR � min(hR, h −
hR), we can approximate the DoAs and AoAs in Fig. 2

as α
(p)
Tsbn ≈ α

(p̃)
Tsbn ≈ αTsbn, α

(p)
Tbsm ≈ α

(p̃)
Tbsm ≈ αTbsm,

α
(q)
Rsbn ≈ α

(q̃)
Rsbn ≈ αRsbn, and α

(q)
Rbsm ≈ α

(q̃)
Rbsm ≈ αRbsm,

where αTsbn, αTbsm, αRsbn, and αRbsm are shown in Fig. 2.

Assuming that each ray, when interacting with the surface

and bottom, has equal incident and reflecting angles, we can

observe that αTsbn = π − αRsbn and αTbsm = 3π − αRbsm.

The distances ε
(p)
Tsbn, ε

(p)
Tbsm, ε

(q)
Rsbn, ε

(q)
Rbsm, and εpq can be

expressed as functions of the random angles αRsbn and αRbsm

and the angle αRdpp as follows

ε
(p)
Tsbn ≈ hT

sinαRsbn
+

Lt + 1 − 2p

2
dT cos(αRsbn + θT ) (15)

ε
(p)
Tbsm ≈− h − hT

sin αRbsm
+

Lt + 1 − 2p

2
dT cos(αRbsm + θT ) (16)

ε
(q)
Rsbn ≈ hR

sinαRsbn
− Lr + 1 − 2q

2
dR cos(αRsbn − θR) (17)

ε
(q)
Rbsm ≈− h − hR

sin αRbsm
− Lr + 1 − 2q

2
dR cos(αRbsm − θR)(18)

εpq ≈
√

R2 + (hT − hR)2 +
Lt + 1 − 2p

2
dT cos(αRdpp − θT )

−Lr + 1 − 2q

2
dR cos(αRdpp − θR), (19)

where parameters p and q take values from the sets p ∈
{1, . . . , Lt} and q ∈ {1, . . . , Lr}, respectively. The deriva-

tions of approximations in (15)-(19) are omitted for brevity.

To simplify further analysis, we normalize all time delays

with respect to the direct arrival time. This normalization is

reflected in the distances εpq, Dsb, and Dbs. Furthermore,



since the depths h, hT , and hR are much smaller than the

distance R, the distances Dsb and Dbs can be approximated

using
√

1 + x ≈ 1 + x/2, for small x. Hence, the distances

εpq, Dsb, and Dbs can be approximated as

εpq ≈ 0.5(Lt + 1 − 2p)dT cos(αRdpp − θT )
−0.5(Lr + 1 − 2q)dR cos(αRdpp − θR), (20)

Dsb ≈ 2
R

[b2h2+bhhR−(−1)(s−b)bhhT +(s − b)hT hR], (21)

Dbs ≈ 2
R

[s2h2−shhR+(−1)(b−s)shhT +(b − s)hT hR].(22)

Finally, we note that εTsb, εRsb, εTbs, and εRbs can be written

as functions of the mean AoA angles μRsb and μRbs, i.e.,

εTsb = hT / sinμRsb, εRsb = hR/ sinμRsb, εTbs = −(h −
hT )/ sinμRbs, and εRbs = −(h − hR)/ sinμRbs, where the

mean AoA angles μRsb and μRbs are depicted in Fig. 1.
The angles of arrival αRsbn and αRbsm are modeled using

the following Gaussian probability density functions (pdfs)

ftop(αRsbn) =
1√

2πσ2
Rsb

exp
{
− (αRsbn − μRsb)2

(2σ2
Rsb)

}
,

for 0 < αRsbn < π, (23)

fbottom(αRbsm) =
1√

2πσ2
Rbs

exp
{
− (αRbsm − μRbs)2

(2σ2
Rbs)

}
,

for π < αRbsm < 2π, (24)

where μRsb and μRbs denote the the mean AoAs, whereas

σRsb and σRbs denote the angle spreads.
Finally, the vertical displacements ΔZsbn(t) and ΔZbsm(t)

are modeled as zero-mean Gaussian random processes with

stationary and independent increments, i.e.,

f(ΔZsbn(t)) =
1√

2πtζ2
ΔZsb

exp

{
− (ΔZsbn(t))2

(2tζ2
ΔZsb

)

}
, (25)

f(ΔZbsm(t)) =
1√

2πtζ2
ΔZbs

exp

{
− (ΔZbsm(t))2

(2tζ2
ΔZbs

)

}
,(26)

where tζ2
ΔZsb

and tζ2
ΔZbs

denote variances.
To simplify further analysis, we use the time-variant transfer

function instead of the input delay-spread function and we

normalize the gain patterns of the transducer elements to unity

(i.e., we assume omnidirectional array elements), although

other gain patterns can be accommodated at this point. The

time-variant transfer function is the Fourier transform of the

input delay-spread function and can be written as

Ppq(t, f) = Fτ {hpq(t, τ)} = PDPP
pq (t, f)

+ PUA
pq (t, f) + PDA

pq (t, f) (27)

where PDPP
pq (t, f), PUA

pq (t, f), and PDA
pq (t, f) are DPP, UA,

and DA components of the time-variant transfer function,

respectively. Using (2)-(22), the DPP, UA, and DA components

of the time-variant transfer function in (27) can be written as

PDPP
pq (t, f) = Fτ

{
hDPP

pq (t, τ)
}

=

√
K

K + 1
LS(D)LA(D)

ej 2πfc
c [vT t cos(αRdpp−γT )−vRt cos(αRdpp−γR)]

ej 2πfc
c (0.5Lt+0.5−p)dT cos(αRdpp−θT )

e−j 2πfc
c (0.5Lr+0.5−q)dR cos(αRdpp−θR), (28)

PUA
pq (t, f) = Fτ

{
hUA

pq (t, τ)
}

=
√

ηB

2B(K + 1)

B∑
b=1

b∑
s=b−1

LS(Dbs)LA(Dbs)LB(θbs)b

√
1

Mbs

Mbs∑
m=1

ξbsmejφbsm

e
−j 2πf

c

[
Dbs−hR+hT −2h

sin μRbs
+

hR+hT −2h

sin αRbsm

]

ej 2πfc
c [vT t cos(αRbsm+γT )−vRt cos(αRbsm−γR)−ΔZbsm(t) sin αRbsm]

ej 2πfc
c [

Lt+1−2p
2 dT cos(αRbsm+θT )−Lr+1−2q

2 dR cos(αRbsm−θR)],(29)

PDA
pq (t, f) = Fτ

{
hDA

pq (t, τ)
}

=
√

ηT

2T (K + 1)

S∑
s=1

s∑
b=s−1

LS(Dsb)LA(Dsb)LB(θsb)b

√
1

Nsb

Nsb∑
n=1

ξsbnejφsbn

e
−j 2πf

c

[
Dsb− hR+hT

sin μRsb
+

hR+hT
sin αRsbn

]

ej 2πfc
c [vT t cos(αRsbn+γT )−vRt cos(αRsbn−γR)−ΔZsbn(t) sin αRsbn]

ej 2πfc
c [

Lt+1−2p
2 dT cos(αRsbn+θT )−Lr+1−2q

2 dR cos(αRsbn−θR)]. (30)

III. SPACE-TIME-FREQUENCY CORRELATION FUNCTION

OF THE STATISTICAL MODEL

Assuming a 2-D WSSUS isovelocity shallow water en-

vironment, we here derive the stf-cf of the geometry-based

statistical model. The normalized stf-cf between two time-

variant transfer functions Ppq(t, f) and Pp̃q̃(t + Δt, f + Δf),
is defined as

Rpq,p̃q̃(Δt,Δf) =
E [Ppq(t, f)∗Pp̃q̃(t + Δt, f + Δf)]√

E[|Ppq(t, f)|2]E[|Pp̃q̃(t, f)|2] , (31)

where ( · )∗ denotes complex conjugate operation, E[ · ] is the

statistical expectation operator, p, p̃ ∈ {1, . . . , Lt}, and q, q̃ ∈
{1, . . . , Lr}. Since PUA

pq (t, f) and PDA
pq (t, f) are independent

zero-mean random processes, (31) can be simplified to

Rpq,p̃q̃(Δt,Δf) = RDPP
pq,p̃q̃ (Δt,Δf) (32)

+ RUA
pq,p̃q̃(Δt,Δf) + RDA

pq,p̃q̃(Δt,Δf),

where RDPP
pq,p̃q̃ (Δt,Δf), RUA

pq,p̃q̃(Δt,Δf), and RDA
pq,p̃q̃(Δt,Δf)

denote the normalized stf-cfs of the DPP, UA, and DA com-

ponents, respectively, and are defined as

RDPP
pq,p̃q̃ (Δt,Δf) =

E
[
PDPP

pq (t,f)∗PDPP
p̃q̃ (t+Δt,f +Δf)

]
ΩDPP /(K + 1)

(33)

RUA
pq,p̃q̃(Δt,Δf) =

E
[
PUA

pq (t,f)∗PUA
p̃q̃ (t+Δt,f +Δf)

]
ΩUA/(K + 1)

(34)

RDA
pq,p̃q̃(Δt,Δf) =

E
[
PDA

pq (t,f)∗PDA
p̃q̃ (t+Δt,f +Δf)

]
ΩDA/(K + 1)

(35)

where ΩUA = E[LS(Dbs)LA(Dbs)LB(θbs)b], ΩDPP =
LS(D)LA(D), and ΩDA = E[LS(Dsb)LA(Dsb)LB(θsb)b].



By substituting (28) into (33), the expression for the stf-cf

of DPP component becomes

RDPP
pq,p̃q̃ (Δt,Δf) = K

ej 2πfc
c [vT Δt cos(αRdpp−γT )−vRΔt cos(αRdpp−γR)]

ej 2πfc
c [(p−p̃)dT cos(αRdpp−θT )−(q−q̃)dR cos(αRdpp−θR)]. (36)

Substituting (29) and (30) into (34) and (35), respectively,

noting that the phases φbsm and φsbn are independent and

uniformly distributed over [−π, π), and assuming that Mbs �
1 and Nsb � 1, the stf-cfs of the UA and DA components

can be written as, respectively,

RUA
pq,p̃q̃(Δt,Δf) =

ηB

2B

B∑
b=1

b∑
s=b−1

∫ 2π

π

1√
2πσ2

Rbs

(37)

e
− (αRbs−μRbs)2

2σ2
Rbs e

−j 2πΔf
c

[
Dbs−hR+hT −2h

sin μRbs
+

hR+hT −2h

sin αRbs

]

ej 2πfc
c [(p−p̃)dT cos(αRbs+θT )−(q−q̃)dR cos(αRbs−θR)]

ej 2πfc
c [vT Δt cos(αRbs+γT )−vRΔt cos(αRbs−γR)]

e−
Δtζ2

ΔZbs
2 [ 2πfc

c sin αRbs]2dαRbs,

RDA
pq,p̃q̃(Δt,Δf) =

ηS

2S

S∑
s=1

s∑
b=s−1

∫ π

0

1√
2πσ2

Rsb

(38)

e
− (αRsb−μRsb)2

2σ2
Rsb e

−j 2πΔf
c

[
Dsb− hR+hT

sin μRsb
+

hR+hT
sin αRsb

]

ej 2πfc
c [(p−p̃)dT cos(αRsb+θT )−(q−q̃)dR cos(αRsb−θR)]

ej 2πfc
c [vT Δt cos(αRsb+γT )−vRΔt cos(αRsb−γR)]

e−
Δtζ2

ΔZsb
2 [ 2πfc

c sin αRsb]
2
dαRsb.

For small angle spreads, the AoAs αRsb and αRbs are

mainly concentrated around the mean AoAs μRsb and μRbs,

respectively. Using the first-order Taylor expansion, the AoA

angles can be approximated as follows

cos(αRsb) ≈ cos(μRsb) − sin(μRsb)(αRsb − μRsb), (39)

sin(αRsb) ≈ sin(μRsb) + cos(μRsb)(αRsb − μRsb), (40)

sin(αRsb)2 ≈ sin(μRsb)2

+2 sin(μRsb) cos(μRsb)(αRsb − μRsb), (41)

sin(αRsb)−1 ≈ sin(μRsb)−1

− cos(μRsb)(αRsb − μRsb)/ sin(μRsb)−2. (42)

The similar approximations are applied to the AoAs αRbs.

Using these trigonometric approximations and the equality∫
ejαx(2πσ2)−1/2e−x2/(2σ2)dx = e−σ2α2/2 [7], the stf-cfs of

UA and DA components can be closely approximated as

RUA
pq,p̃q̃(Δt,Δf) =

ηB

2B

B∑
b=1

b∑
s=b−1

e−
Δtζ2

ΔZbs
2 [ 2πfc

c sin μRbs]2 (43)

e−j 2πΔf
c Dbs+j 2πfc

c [(p−p̃)dT cos(μRbs+θT )−(q−q̃)dR cos(μRbs−θR)]

ej 2πfc
c [vT Δt cos(μRbs+γT )−vRΔt cos(μRbs−γR)]

e
−σ2

Rbs
2 [ 2πΔf

c

hR+hT −2h

sin μRbs tan μRbs
+ 2πfc

c (q−q̃)dR sin(μRbs−θR)]

e−
σ2

Rbs
2 [− 2πfc

c (p−p̃)dT sin(μRbs+θT )+ 2πfc
c vRΔt sin(μRbs−γR)]

e−
σ2

Rbs
2 [Δtζ2

ΔZbs
[ 2πfc

c ]2 sin μRbs cos μRbs]2− 2πfc
c vT Δt sin(μRbs+γT ),

RDA
pq,p̃q̃(Δt,Δf) =

ηS

2S

S∑
s=1

s∑
b=s−1

e−
Δtζ2

ΔZsb
2 [ 2πfc

c sin μRsb]
2
(44)

e−j 2πΔf
c Dsb+j 2πfc

c [(q−q̃)dR cos(μRsb−θR)−(p−p̃)dT cos(μRsb+θT )]

ej 2πfc
c [vT Δt cos(μRsb+γT )−vRΔt cos(μRsb−γR)]

e
−σ2

Rsb
2 [ 2πΔf

c

hR+hT
sin μRsb tan μRsb

+ 2πfc
c (q−q̃)dR sin(μRsb−θR)]

e−
σ2

Rsb
2 [− 2πfc

c (p−p̃)dT sin(μRsb+θT )+ 2πfc
c vRΔt sin(μRsb−γR)]

e−
σ2

Rsb
2 [Δtζ2

ΔZsb
[ 2π

λ ]2 sin μRsb cos μRsb]
2− 2πfc

c vT Δt sin(μRsb+γT ).

IV. COMPARISON WITH MEASURED DATA

In this section, we compare the theoretical results in Sec-

tion III with the AUVFest07 measured data in [8], collected

at rough sea. Furthermore, we compare the derived spatial

correlation function with the spatial correlation functions of

the exponential model in [9], the particle-velocity model in [7],

and the measured data in [9]. The close agreement between

the analytical and measured statistics is observed.

The channel measurements in [8] are collected at fc =
17 kHz and the speed of sound was c = 1470 m/s. The

distance between the Tx and Rx was R = 5 km. The water,

Tx, and Rx depths were h = 20 m, hT = 19 m, and

hR = 18 m, respectively. The Tx and Rx are equipped with

vertically oriented transducer elements (i.e., θT = θR = 90◦).

It is assumed that the Tx and Rx are relatively stationary, i.e.,

slightly moving with waves (i.e., γT = γR = 90◦).
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Fig. 3. The magnitude of the theoretical and measured temporal correlation
functions for rough sea.

Fig. 3 compares the analytical temporal correlation function

in (32) with the measured temporal correlation function in [8]

for the rough sea environment. The analytical curve is obtained

with the estimated parameters K = 0.38, S = 1, B = 1, vT =
0.005 m/s, vR = 0.002 m/s, ζΔZs=1,b=0 = ζΔZs=1,b=1 =
0.0014, ζΔZb=1,s=0 = ζΔZb=1,s=1 = 0.006, μs=1,b=0 = 168◦,

μs=1,b=1 = 171◦, μb=1,s=0 = 205◦, μb=1,s=1 = 210◦,

σs=1,b=0 = 2.55◦, σs=1,b=1 = 3.1◦, σb=1,s=0 = 10◦,

σb=1,s=1 = 12◦, ηS = 0.2, and ηB = 1−ηS . The parameters S
and B are visually estimated from Fig. 2d in [8]. The rest of

the parameters are estimated using the maximum likelihood



method described in [12]. The parameters R, h, hT , hR,

γT , γR, θT , θR, and αRdpp ≈ π, are selected to match the

measurement conditions as described above. Fig. 4 compares
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Fig. 4. The magnitude of the theoretical and measured spatial correlation
functions for rough sea.

the analytical spatial correlation function in (32) with the

measured spatial correlation function in [8] for the rough sea

environment.The analytical curve in Fig. 4 is obtained using

the same parameters as in Fig. 3. Finally, Fig. 5 compares the

spatial correlation in (32) with the analytical spatial correlation

in [7] and the analytical and empirical spatial correlations in

[9]. The ASCOT01 channel measurements are collected at
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Fig. 5. Comparison of the analytical spatial correlations in (32), [7], and [9]
with the empirical spatial correlation in [9].

the carrier frequency 1.2 kHz and the speed of sound was

c = 1440 m/s (i.e., λ=1.2 m) [9]. The distance between the Tx

and Rx was R = 10 km. The water, Tx, and Rx depths were

h = 103 m, hT = 50 m, and hR = 50 m, respectively. The Rx

was equipped with 33 vertically oriented transducer elements

(i.e., θR = 90◦) with L = dR = 0.5 m element spacing,

while the Rx was equipped with one vertical transducer (i.e.,

θT = 90◦). The vertical correlation is calculated with respect

to eighth element from the bottom of the 33-element array. The

analytical spatial correlation in (32) is obtained with the esti-

mated parameters K = 0.71, S = B = 1, μs=1,b=0 = 173.8◦,

μs=1,b=1 = 173.4◦, μb=1,s=0 = 183◦, μb=1,s=1 = 184.5◦,

σs=1,b=0 = 9.1◦, σs=1,b=1 = 10.2◦, σb=1,s=0 = 5.59◦,

σb=1,s=1 = 8.89◦, ηS = 0.44, and ηB = 1 − ηS . The

parameters R, h, hT , hR, θT , θR, and αRdpp ≈ π, are selected

to match the measurement conditions described above. For the

reference, Fig. 5 also shows the spatial correlation functions

of the exponential model in [9], i.e, exp{−L2/(2λ)2} and the

particle-velocity model in [7] (with parameters Λb = 0.56,

μb = 183◦, μs = 173◦, σb = 2.29◦, and σs = 8◦). One can

observe that the proposed model provides a closer match with

the experimental correlation than the models in [7] and [9].

The close agreement between the analytical and measured

statistics in Figs. 3-5 confirms the utility of the proposed

model.

V. CONCLUSIONS

This paper proposed the geometry-based statistical model

for MIMO SWA fading channels. From the statistical model,

the corresponding space-time-frequency correlation function is

derived. Finally, the derived statistics are compared with the

empirically obtained channel statistics and the close agreement

is observed.
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